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Abstract
A new efficient method for calculating the photoionization of a hydrogen atom
in a strong magnetic field is developed based on the Kantorovich approach to the
parametric boundary problems in spherical coordinates using the orthogonal
basis set of angular oblate spheroidal functions. The progress as compared
with our previous paper (Dimova M G, Kaschiev M S and Vinitsky S I 2005
J. Phys. B: At. Mol. Opt. Phys. 38 2337–52) consists of the development of
the Kantorovich method for calculating the wavefunctions of a continuous
spectrum, including the quasi-stationary states imbedded in the continuum.
Resonance transmission and total reflection effects for scattering processes of
electrons on protons in a homogenous magnetic field are manifested. The
photoionization cross sections found for the ground and excited states are
in good agreement with the calculations by other authors and demonstrate
correct threshold behavior. The estimates using the calculated photoionization
cross section show that due to the quasi-stationary states the laser-stimulated
recombination may be enhanced by choosing the optimal laser frequency.

PACS numbers: 31.15.Ja, 31.15.Pf, 34.50.Pi, 32.80.Fb

1. Introduction

In recent decades the dynamics of transient processes in magnetic traps, such as excitation,
de-excitation, ionization, recombination of ions and atoms, became a subject of intense
experimental and theoretical studies [1–4]. Recently a new mechanism of formation of
metastable positive-energy atoms via quasi-stationary states [5] due to the magnetic field
was revealed. The most complicated case when the magnetic energy is comparable to that
of Coulomb interaction requires new approaches to provide really stable numerical schemes
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for the states of both discrete and continuous spectra, including the quasi-stationary states,
analogous to the well-known doubly excited states of a helium atom [6–10]. In the known
approaches serious problems arise, for example, concerned with reproducing true threshold
behavior in the variational complex rotation method [8, 11] or with constructing efficient and
stable numerical schemes [11]. In doing so, this method does not describe the difference in
physical asymptotics of scattering states for a different choice of a gauge of magnetic field
[12]. The R-matrix approach [13–16] using the combined nonorthogonal basis of Landau and
Sturmian functions in both cylindrical and spherical coordinates leads to the ill-conditioned
matrix problems [6, 17]. The method of diabatic sector basis functions requires a huge interval
for the integration of the closed set of radial equations, because the overlap matrix between the
pure physical asymptotic solutions in cylindrical coordinates and the numerical basis functions
at large r can be calculated only numerically [7, 10]. The Kantorovich method (KM) [18]
has been shown to provide strong mathematical background for consequent development of
the adiabatic approach in spherical coordinates [19] using the orthogonal basis set of angular
oblate spheroidal functions (AOSF) [20]. This approach yields stable calculation schemes for
boundary problems, however, heretofore it has been elaborated only for the discrete spectrum
problem [9].

In the present paper we develop the KM (i.e., the reduction of the boundary problem for
elliptical partial differential equation in a 2D domain to a regular boundary problem for a set
of ordinary second-order differential equations with variable coefficients with the boundary
conditions of the third kind) in the form, appropriate for R-matrix calculations of the continuous
spectrum and photoionization of atomic hydrogen in a strong magnetic field [21]. The solution
depending on the radial variable r and the angular variable η = cos θ = z/r with fixed values
of the magnetic quantum number m and the z-parity σ is expanded using the basis set of the
AOSF, which is orthogonal at fixed values of the radial variable. A matter of principle in the
implementation of KM is how to calculate the matrix of the variable coefficients, expressed as
angular integrals involving the derivatives of the angular functions with respect to a parameter,
keeping the accuracy the same as for the angular functions themselves. This is achieved by
calculating the mentioned derivatives as solutions of the inhomogenous boundary problem
that results from differentiation of the ordinary second-order differential equation for the
spheroidal functions with respect to the parameter and the corresponding algebraic eigenvalue
problem, for which a stable symbolic-numerical algorithm is developed [22, 23]. The stability
of the computational scheme is achieved using the fact that at small r (in the vicinity of pair
collision point) the angular functions turn into the associated Legendre polynomials, while at
large r near η = ±1 they turn into the associated Laguerre functions [24, 25]. This makes it
possible to construct asymptotic expansions in powers of r−2, necessary for computer-accuracy
calculation of the basis set of functions at all values of the parameter r. Substantial economy
of computer resource in the numerical solution of the boundary problem for the set of radial
equations is achieved by decreasing the integration interval 0 � r � rmax. With this aim in the
present paper for large r � rmax new asymptotic expansions of the fundamental solutions of
the radial equations are constructed in the basis of linear combinations of Coulomb regular and
irregular functions and their derivatives. The corresponding matrix of asymptotic expansions
of fundamental solutions is derived in the analytic form and is related to the overlap matrix
between the physical asymptotic form of fundamental solutions in the cylindrical coordinates,
z = r cos θ, ρ = r sin θ and the asymptotic form of the basis functions of the independent
variable η = cos θ at large values of r. The presented recurrence relations for expressing this
matrix in the analytic form are the key to calculating the reaction matrix K via the matrix of
logarithmic derivative of the radial solution in the joining point of numerical and asymptotic
solutions in the inner and outer regions. The capabilities of the elaborated method and the
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Figure 1. Projections of cylindrical and spherical coordinate systems in the zx plane for a hydrogen
atom or scattering of an electron with a proton in a homogenous magnetic field �B = (0, 0, B).

computational scheme are demonstrated by the example of photoionization cross section of
a hydrogen atom in the magnetic field. Using the previously derived relation between the
photoionization cross section and the laser-induced radiative recombination rate, it is shown
that the latter can be increased by tuning the laser frequency to resonances that arise due to
quasi-stationary states.

The paper is organized as follows. In section 2 the 2D-eigenvalue problem for the
Schrödinger equation, describing a hydrogen atom in an axially symmetric magnetic field, is
considered in the cylindrical coordinates together with the appropriate classification of states.
The reduction of the 2D-eigenvalue problem to a 1D-eigenvalue problem for a set of closed
longitude equations via both the Kantorovich and Galerkin methods is described briefly. It
is shown that the Galerkin expansion follows from the Kantorovich expansion at z → ±∞.
In section 2.3 the relation between the function with given parity and the function having the
physical scattering asymptotic form in the cylindrical coordinates is established. In section 3
the same problem as in section 2 is considered in the spherical coordinates. The reduction of
the 2D-eigenvalue problem to a 1D-eigenvalue problem for a set of closed radial equations via
four steps of the KM is described briefly in section 3.1. The asymptotic forms of the matrix
element and radial solutions are considered in sections 3.2–3.5. The asymptotic expressions
using regular and irregular Coulomb functions needed to find the solutions and the reaction
matrix by means of the R-matrix method are presented in section 3.6. The correspondence
of asymptotic total wavefunctions at large r and |z| is shown explicitly in section 3.7. The
method is applied to the ionization of low-lying states of a hydrogen atom in section 4. In
section 5 the numerical results obtained within the framework of the finite-element method
are discussed. The estimates of the laser-induced recombination rate based on the calculated
photoionization cross sections are also presented. In conclusion we outline the perspectives
of further applications of this approach. The detailed analysis of asymptotic calculations is
given in appendix A, B and C.

2. Statement of the problem in cylindrical coordinates

In the cylindrical coordinates (ρ, z, ϕ) (see figure 1) the wavefunction

�̂(ρ, z, ϕ) = �(ρ, z)
exp(ımϕ)√

2π
(1)
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of a hydrogen atom in an axially symmetric magnetic field �B = (0, 0, B) satisfies the 2D
Schrödinger equation

− ∂2

∂z2
�(ρ, z) +

(
Âc − 2Z√

ρ2 + z2

)
�(ρ, z) = ε�(ρ, z), (2)

Âc = − 1

ρ

∂

∂ρ
ρ

∂

∂ρ
+

m2

ρ2
+ mγ +

γ 2ρ2

4
, (3)

in the region �c: 0 < ρ < ∞ and −∞ < z < ∞. Here m = 0,±1, . . . is the
magnetic quantum number, γ = B/B0, B0 ∼= 2.35 × 105T is a dimensionless parameter
which determines the field strength B. We use the atomic units (au) h̄ = me = e = 1 and
assume the mass of the nucleus with a charge Z to be infinite. In these expressions ε = 2E

is the twice energy (expressed in Rydbergs, 1 Ry = (1/2) au) of the bound state |mσ 〉 with
fixed values of m and z-parity σ = ±1 and �(ρ, z) ≡ �mσ (ρ, z) = σ�mσ (ρ,−z) is the
corresponding wavefunction. The boundary conditions in each mσ subspace of the full Hilbert
space have the form

lim
ρ→0

ρ
∂�(ρ, z)

∂ρ
= 0, for m = 0, and �(0, z) = 0, for m �= 0, (4)

lim
ρ→∞ �(ρ, z) = 0. (5)

The wavefunction of the discrete spectrum obeys the asymptotic boundary condition.
Approximately this condition is replaced by the boundary condition of the first type at large,
but finite |z| = zmax 	 1, namely,

lim
z→±∞ �(ρ, z) = 0 → �(ρ,±zmax) = 0. (6)

These functions satisfy the additional normalization condition∫ zmax

−zmax

∫ ∞

0
|�(ρ, z)|2ρ dρ dz = 1. (7)

The asymptotic boundary condition for the continuum wavefunction will be considered in
section 2.3.

2.1. Kantorovich expansion

Consider a formal expansion of the partial solution �Emσ
i (ρ, z) of equations (2)–(5),

corresponding to the eigenstate |mσi〉, expanded in the finite set of one-dimensional basis
functions

{
�̂m

j (ρ; z)
}jmax

j=1

�Emσ
i (ρ, z) =

jmax∑
j=1

�̂m
j (ρ; z)χ̂

(mσi)
j (E, z). (8)

In equation (8) the functions χ̂(i)(z) ≡ χ̂(mσ i)(E, z), (χ̂(i)(z))T = (χ̂
(i)
1 (z), . . . , χ̂

(i)
jmax

(z))

are unknown and the surface functions Φ̂(ρ; z) ≡ Φ̂
m
(ρ; z) = Φ̂

m
(ρ;−z), (Φ̂(ρ; z))T =

(�̂1(ρ; z), . . . , �̂jmax(ρ; z)) form an orthonormal basis for each value of the variable z which
is treated as a parameter.
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In the Kantorovich approach the wavefunctions �̂j (ρ; z) and the potential curves Êj (z)

(in Ry) are determined as the solutions of the following one-dimensional parametric eigenvalue
problem (

Âc − 2Z√
ρ2 + z2

)
�̂j (ρ; z) = Êj (z)�̂j (ρ; z), (9)

with the boundary conditions

lim
ρ→0

ρ
∂�̂j (ρ; z)

∂ρ
= 0, for m = 0, and �̂j (0; z) = 0, for m �= 0, (10)

lim
ρ→∞ �̂j (ρ; z) = 0. (11)

Since the operator in the left-hand side of equation (9) is self-adjoint, its eigenfunctions are
orthonormal

〈�̂i(ρ; z)|�̂j (ρ; z)〉ρ =
∫ ∞

0
�̂i(ρ; z)�̂j (ρ; z)ρ dρ = δij , (12)

where δij is the Kronecker symbol. Therefore, we transform the solution of the above problem
into the solution of an eigenvalue problem for a set of jmax ordinary second-order differential
equations that determines the energy ε and the coefficients χ̂(i)(z) of expansion (8)(

−I
d2

dz2
+ Û(z) + Q̂(z)

d

dz
+

dQ̂(z)

dz

)
χ̂(i)(z) = εiIχ̂(i)(z). (13)

Here I, Û(z) = Û(−z) and Q̂(z) = −Q̂(−z) are the jmax × jmax matrices whose elements are
expressed as

Ûij (z) = Êi(z) + Êj (z)

2
δij + Ĥ ij (z), Iij = δij ,

Ĥ ij (z) = Ĥ ji(z) =
∫ ∞

0

∂�̂i(ρ; z)

∂z

∂�̂j (ρ; z)

∂z
ρ dρ, (14)

Q̂ij (z) = −Q̂ji(z) = −
∫ ∞

0
�̂i(ρ; z)

∂�̂j (ρ; z)

∂z
ρ dρ.

The discrete spectrum solutions obey the asymptotic boundary condition and the
orthonormality conditions

lim
z→±∞ χ̂(i)(z) = 0 → χ̂(i)(±zmax) = 0,

∫ zmax

−zmax

(χ̂(i)(z))T χ̂(j)(z) dz = δij . (15)

The application of this approach to the calculation of low-excited bound states of the hydrogen
atom for γ > 1 and −m = 0, . . . , 10 will be presented in the forthcoming paper [26] for
jmax ∼ 10, while the cases of laboratory fields of γ ∼ 6 T and −m < 150 were considered
in [27].

2.2. Galerkin expansion

Consider a formal expansion of the partial solution �Emσ
i (ρ, z) of equations (2)–(5)

corresponding to the eigenstate |mσi〉, in terms of the finite set of one-dimensional basis
functions

{
�̃m

j (ρ)
}jmax

j=1

�Emσ
i (ρ, z) =

jmax∑
j=1

�̃m
j (ρ)χ̃

(mσi)
j (E, z). (16)
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In the Galerkin approach the wavefunctions �̃j (ρ) = �̃m
j (ρ) and the potential curves Ẽj (in

Ry) are determined as the solutions of the following one-dimensional eigenvalue problem

Âc�̃j (ρ) = Ẽj �̃j (ρ), (17)

with the boundary conditions

lim
ρ→0

ρ
∂�̃j (ρ)

∂ρ
= 0, for m = 0, and �̃j (0) = 0, for m �= 0, (18)

lim
ρ→∞ �̃j (ρ) = 0. (19)

The above eigenvalue problem has the exact solution at fixed m, normalized like (12)

�̃j (ρ) =
√

γNρ!

(Nρ + |m|)! exp

(
−γρ2

4

)(
γρ2

2

) |m|
2

L
|m|
Nρ

(
γρ2

2

)
,

Ẽj = γ (2Nρ + |m| + m + 1),

(20)

where Nρ = j − 1 is the transversal quantum number and L
|m|
Nρ

(x) is the associated Laguerre
polynomial [20]. Note that the Galerkin expansion follows from the Kantorovich expansion
at z → ±∞, i.e.,

�̃j (ρ) = lim
z→±∞ �̂j (ρ; z), lim

z→±∞ Êj (z) = Ẽj = εth
mj (γ ) = γ (2Nρ + |m| + m + 1). (21)

Therefore, we transform the solution of the above problem into the solution of an eigenvalue
problem for a set of jmax ordinary second-order differential equations that determines the
energy ε and the coefficients χ̃(i)(z) of expansion (16)(

−I
d2

dz2
+ Ũ(z)

)
χ̃(i)(z) = εiIχ̃(i)(z), (22)

and the matrix Ũ(z) = Ũ(−z) is expressed as

Ũij (z) = Ẽi + Ẽj

2
δij −

∫ ∞

0
�̃i(ρ)

2Z√
ρ2 + z2

�̃j (ρ)ρ dρ. (23)

The discrete spectrum solutions obey the asymptotic boundary condition and the
orthonormality condition

lim
z→±∞ χ̃(i)(z) = 0 → χ̃(i)(±zmax) = 0,

∫ zmax

−zmax

(χ̃(i)(z))T χ̃(j)(z) dz = δij . (24)

The application of this approach to the calculation of bound states of the hydrogen atom for
γ > 1 is well known in [28]. The calculation of photoionizations of hydrogen in a strong
magnetic field of B ∼ 600–2000 T was considered within the frameworks of the multichannel
quantum defect theory [29], while for the cases of laboratory fields of B ∼ 6 T such a type of
calculations is of course not practicable, because jmax ∼ 200.

2.3. Relation between the parity functions and the functions having physical scattering
asymptotic form in cylindrical coordinates

The asymptotic form of the coefficients χ̃(n)(z) of expansion (16) (or χ̂(n)(z) of expansion (8))
with fixed m, σ and ε = 2E for the nth solution in open channels is

χEmσn′n(z → ±∞) =


a+1n′n√

pn′
cos

(
pn′z +

Z

pn′

z

|z| ln(2pn′ |z|) +
z

|z|δ+1n

)
, σ = +1,

a−1n′n√
pn′

sin

(
pn′z +

Z

pn′

z

|z| ln(2pn′ |z|) +
z

|z|δ−1n

)
, σ = −1,

(25)
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(a) (b)

Figure 2. Schematic diagrams of the continuum spectrum states’ waves having the asymptotic
form: (a) ‘incident wave + outgoing wave’, (b) ‘incident wave + ingoing wave’.

where pn = √
2E − εth

mn � 0 and n, n′ = 1, . . . , No, δσn = δσ
n + δc

n − (σ + 1)π/4 are the phase
shifts, δσ

n and δc
n are the eigenchannel short-range and Coulomb phase shifts, aσn′n = Cσ

n′n are
the amplitudes or mixed parameters defined in section 4 and No = max2E�εth

mn
n is the number

of open channels. Equation (25) may be rewritten in the matrix form, so that

χEσ (z → ±∞) =




1

2
X(+)(z)A+1 +

1

2
X(−)(z)A∗

+1, σ = +1,

1

2ı
X(+)(z)A−1 − 1

2ı
X(−)(z)A∗

−1, σ = −1,

, z > 0,


1

2
X(+)(z)A∗

+1 +
1

2
X(−)(z)A+1, σ = +1,

1

2ı
X(+)(z)A∗

−1 − 1

2ı
X(−)(z)A−1, σ = −1,

, z < 0,

(26)

where coefficients of matrices X(±)(z) and A±1 take the form

X
(±)
n′n (z) = p

−1/2
n′ exp

(
±ıpn′z ± ı

Z

pn′

z

|z| ln(2pn′ |z|)
)

δn′n, (27)

Aσn′n = aσn′n exp(ıδσn). (28)

On the other hand, the function that describes the incidence of the particle and its scattering,
having the asymptotic form ‘incident wave + outgoing wave’ (see figure 2(a)), is

χ
(+)
Ev̂(z → ±∞) =


{

X(+)(z)T̂, z > 0,

X(+)(z) + X(−)(z)R̂, z < 0,
, v̂ =→,{

X(−)(z) + X(+)(z)R̂, z > 0,

X(−)(z)T̂, z < 0,
, v̂ =←,

(29)

where T̂ and R̂ are the transmission and reflection amplitude matrices, T̂†T̂ + R̂†R̂ = Ioo, v̂

denotes the initial direction of the particle motion along the z axis and Ioo is the unit No × No

matrix. Note that due to the symmetry of the scattering potential the transmission and reflection
coefficients are independent of the direction of the incident wave vector.

This wavefunction may be presented as a linear combination of the solutions having
positive and negative parities:

χ
(+)

E
→←(z) = χE,+1(z)B+1 ± ıχE,−1(z)B−1. (30)

It is easy to show that Bσ = [A∗
σ ]−1, and T̂ and R̂ are defined by

T̂ = 1
2 (A+1B+1 + A−1B−1) = 1

2 (−Š+1 + Š−1),

R̂ = 1
2 (A+1B+1 − A−1B−1) = 1

2 (−Š+1 − Š−1),
(31)
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where Šσ is the scattering matrix at fixed σ defined by (28). However, to calculate the
ionization cross section it is necessary to use the function having the reverse asymptotic form
‘incident wave + ingoing wave’ (see figure 2(b)), that is

χ
(−)
Ev̂ (z → ±∞) =


{

X(+)(z) + X(−)(z)R̂†, z > 0,

X(+)(z)T̂†, z < 0,
, v̂ =→,{

X(−)(z)T̂†, z > 0,

X(−)(z) + X(+)(z)R̂†, z < 0,
, v̂ =←,

(32)

or

χ
(−)

E
→←(z) = χE,+1(z)B

∗
+1 ± ıχE,−1(z)B

∗
−1. (33)

Note that
(
χ

(−)

E
→←(z)

)∗ = χ
(+)

E
←→(z). The functions are normalized so that

jmax∑
n′′=1

∫ ∞

−∞

(
χ

(±)
E′mv̂′n′′n′(z)

)∗
χ

(±)
Emv̂n′′n(z) dz = 2πδ(E′ − E)δv̂′v̂δn′n. (34)

The Ŝ-matrix may be composed of the transmission and reflection amplitudes

Ŝ =
(

T̂ R̂
R̂ T̂

)
. (35)

This matrix is unitary, since T̂†T̂ + R̂†R̂ = Ioo and R̂†T̂ + T̂†R̂ = 0. These conditions will
be used to check the accuracy of numerical multichannel calculations of continuous spectrum
wavefunctions in section 5.

To calculate the ionization it is convenient to use the function renormalized to δ(E′ − E),
i.e., divided by

√
2π :

|Ev̂mNρ〉 = exp(ımϕ)

2π

jmax∑
n′=1

�̃n′(ρ)χ̃
(−)
Emv̂n′n(z) (36)

or

|Ev̂mNρ〉 = exp(ımϕ)

2π

jmax∑
n′=1

�̂n′(ρ; z)χ̂
(−)
Emv̂n′n(z), (37)

where Nρ = n − 1. The expression for the cross section of ionization by the light linearly
polarized along the axis z is

σd
Nlm(ω) = 4π2αω

No−1∑
Nρ=0

∑
v̂

|〈Ev̂mNρ |z|Nlm〉|2a2
0 . (38)

In the above expressions ω = E − ENlm is the frequency of radiation, ENlm is the energy of
the initial bound state |Nlm〉 specified by the spherical quantum numbers N, l,m defined in
section 3, α is the fine-structure constant, a0 is the Bohr radius.

For recombination the wavefunction should be renormalized to one particle per unit length
in the incident wave

|vmNρ〉 = √
pn

exp(ımϕ)√
2π

jmax∑
n′=1

�̃n′(ρ)χ̃
(+)
Emv̂n′n(z) (39)

or

|vmNρ〉 = √
pn

exp(ımϕ)√
2π

jmax∑
n′=1

�̂n′(ρ; z)χ̂
(+)
Emv̂n′n(z), (40)
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where v = v̂pn and Nρ = n − 1. The expression for the rate of recombination induced by
the light linearly polarized along the axis z for the particle, initially moving in the channel Nρ

with the velocity v has the form

λrec
NNρ

(v) = 4π2αI

N−1∑
l=0

0∑
m=−l

|〈Nlm|z|vmNρ〉|2δ(E − ENlm − ω)a2
0, (41)

I being the intensity of the incident light.
For the light circularly polarized in the plane xOy the above expressions read as

σ
p

Nlm(ω) = 4π2αω

No−1∑
Nρ=0

∑
v̂

|〈Ev̂m ± 1Nρ |�e±�r|Nlm〉|2a2
0, (42)

λrec
NNρ

(v) = 4π2αI

N−1∑
l=0

0∑
m=−l

|〈Nlm ± 1|�e±�r|vmNρ〉|2δ(E − ENlm − ω)a2
0, (43)

where the complex unit vectors are �e± = 1√
2
�i ± ı√

2
�j .

3. Statement of the problem in spherical coordinates

In the spherical coordinates (r, θ, ϕ) (see figure 1) equation (2) can be rewritten as [31](
− 1

r2

∂

∂r
r2 ∂

∂r
+

1

r2
Â(p) − 2Z

r

)
�(r, η) = ε�(r, η) (44)

in the domain �: 0 < r < ∞ and −1 < η = cos θ < 1. Here Â(p) is the parametric
Hamiltonian

Â(p) = − ∂

∂η
(1 − η2)

∂

∂η
+

m2

1 − η2
+ 2pm + p2(1 − η2), (45)

p = γ r2/2 and �(r, η) ≡ �mσ (r, η) = σ�mσ (r,−η). The sign of z-parity σ = (−1)Nη is
defined by the number of nodes Nη of the solution �(r, η) as a function of η. We will also use
the scaled radial variable r̂ = r

√
γ , the effective charge Ẑ = Z/

√
γ and the scaled energy

ε̂ = ε/γ or Ê = E/γ . Practically it means replacing γ with 1 and multiplying Z by 1/
√

γ

and ε or E by 1/γ in all equations above.
The boundary conditions in each mσ subspace of the full Hilbert space have the form

lim
η→±1

(1 − η2)
∂�(r, η)

∂η
= 0, for m = 0, and �(r,±1) = 0, for m �= 0,

(46)

lim
r→0

r2 ∂�(r, η)

∂r
= 0. (47)

The wavefunction of the discrete spectrum obeys the asymptotic boundary condition.
Approximately this condition is replaced by the boundary condition of the first type at large,
but finite r = rmax, namely,

lim
r→∞ r2�(r, η) = 0 → �(rmax, η) = 0. (48)
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Figure 3. Profiles of the even �i ≡ �mσ=+1(η; r) and odd �i ≡ �mσ=−1(η; r) basis functions
at m = 0 and γ = 1 for i = 1, 2 in the zx plane.

In the Fano-Lee R-matrix theory [14, 15] the wavefunction of the continuum �(r, η) obeys
the boundary condition of the third type at fixed values of the energy ε and the radial variable
r = rmax

∂�(r, η)

∂r
− µ�(r, η) = 0. (49)

Here the parameters µ ≡ µ(rmax, ε), determined by the variational principle, play the role
of eigenvalues of the logarithmic normal derivative matrix of the solution of the boundary
problem (44)–(47) and (49).

3.1. Kantorovich expansion

Consider a formal expansion of the partial solution �Emσ
i (r, η) of equations (44)–(47) with

conditions (48) and (49), corresponding to the eigenstate |mσi〉, in terms of the finite set of
one-dimensional basis functions {�mσ

j (η; r)}jmax
j=1

�Emσ
i (r, η) =

jmax∑
j=1

�mσ
j (η; r)χ

(mσi)
j (E, r). (50)

In equation (50) the functions χ(i)(r) ≡ χ(mσ i)(E, r), (χ(i)(r))T = (χ
(i)
1 (r), . . . , χ

(i)
jmax

(r))

are unknown and the surface functions Φ(η; r) ≡ Φmσ (η; r) = σΦmσ (−η; r), (Φ(η; r))T =
(�1(η; r), . . . , �jmax(η; r)) form an orthonormal basis for each value of r which is treated as
a parameter (see figure 3).

In the Kantorovich approach the wavefunctions �j(η; r) and the potential curves Ej(r)

(in Ry) are determined as the solutions of the following one-dimensional parametric eigenvalue
problem

Â(p)�j (η; r) = Ej(r)�j (η; r), (51)
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with the boundary conditions

lim
η→±1

(1 − η2)
∂�j (η; r)

∂η
= 0, for m = 0 and �j(±1; r) = 0, for m �= 0. (52)

Since the operator in the left-hand side of equation (51) is self-adjoint, its eigenfunctions are
orthonormal,

〈�i(η; r)|�j(η; r)〉η =
∫ 1

−1
�i(η; r)�j (η; r) dη = δij . (53)

Note that the solutions of this problem with shifted eigenvalues, Ěj (r) = Ej(r) − 2pm,
correspond to the solutions of the eigenvalue problem for the AOSF [20]

A(p)�j (η; r) = Ěj (r)�j (η; r), (54)

where A(p) = Â(p)−2pm. At fixed values σ = ±1 and |m| the eigenfunctions �j(θ; r) are
sought in the form of a series expansion over the normalized associated Legendre polynomials
P

|m|
|m|+s(η) [20] with unknown coefficients c

|m|σ
sj (r),

�j(η; r) =
smax∑

s=(1−σ)/2

c
|m|σ
sj (r)P

|m|
|m|+s(η), (55)

where s is an even (odd) integer at σ = (−1)s = ±1. The calculations of eigenfunctions
�j(θ; r) and of eigenvalues Ei(r) were performed by a special choice of value smax to
achieve a relative computer accuracy using the code POTHMF realizing in FORTRAN [23].
Their plots are presented in figures 3 and 4. For small p the asymptotic behavior of the
eigenvalues Ej(r), j = 1, 2, . . . at fixed values of m and σ is determined by the values of the
orbital quantum number l labeled by a conventional sequences of {s, p, d, f, g, h, i, k, l, . . .} :
Ej(0) = l(l +1), l = 0, 1, . . . , where j = (l −|m|)/2+1 for even states, σ = +1 = (−1)l−|m|

and j = (l − |m| + 1)/2 for odd states, σ = −1 = (−1)l−|m|, defined by �j(η; 0) = P
|m|
l (η).

Taking into account the fact that the number of nodes Nη of the eigenfunction �j(η; r) at fixed
m and σ = (−1)Nη does not depend on the parameter p, we find a one-to-one correspondence
between these sets, i.e., Nη = l − |m|.

For large r the asymptotic behavior of the eigenfunctions �j(η; r) and eigenvalues Ej(r)

at fixed values of m and σ is determined by the value of the transversal quantum number,
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Figure 5. Profiles of the left �i ≡ �m→(η; r) and right �i ≡ �m←(η; r) basis functions at
m = 0 and γ = 1 for i = 1, 2 in the zx plane.

Nρ = j − 1 (see equations (20) and (21) and section 3.4)

�̃j (ρ) = lim
r→∞,|η|∼1

r−1�j(|η|; r),

lim
r→∞ r−2Ej(r) = εth

mj (γ ) = γ (2Nρ + |m| + m + 1).
(56)

The transversal quantum number Nρ , i.e., the number of nodes of the eigenfunction Φmσ (η; r)

in the subinterval 0 < η < 1 or −1 < η < 0, can be expressed via Nη as follows: Nρ = Nη/2
for the even states, σ = +1 and Nρ = (Nη − 1)/2 for the odd states, σ = −1. It means that
the eigenfunctions

Φmv̂(η; r) = Φmσ=+1(η; r) ± Φmσ=−1(η; r)√
2

, (57)

labeled by v̂ =←→ at large r are localized in the vicinity of η = ±1 (i.e., at z → +∞ and
z → −∞) and have Nρ nodes in the subintervals 0 < η < 1 and −1 < η < 0, respectively
(see figure 5). Such asymptotic functions Φmv̂(η; r) correspond to Φ̃m

(ρ) in equations (20)
and (21). Their asymptotic behavior is considered in section 3.4. Taking into account the
above-mentioned correspondence rules between the quantum numbers Nη and Nρ and number
j at fixed values m and σ , we will use the unified number, j , without pointing out explicitly a
concrete type of quantum numbers.

From here on we transform the solution of problem (44) into the solution of an eigenvalue
problem for a set of jmax ordinary second-order differential equations that determine the energy
ε and the coefficients χ(i)(r) of expansion (50) (the radial wavefunctions):(

−I
1

r2

d

dr
r2 d

dr
+

U(r)

r2
+ Q(r)

d

dr
+

1

r2

dr2Q(r)

dr

)
χ(i)(r) = εiIχ(i)(r), (58)

lim
r→0

r2

(
dχ(i)(r)

dr
− Q(r)χ(i)(r)

)
= 0. (59)
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Here U(r) and Q(r) are jmax × jmax matrices with the elements expressed as

Uij (r) = Ei(r) + Ej(r)

2
δij − 2Zrδij + r2Hij (r),

Hij (r) = Hji(r) =
∫ 1

−1

∂�i(η; r)

∂r

∂�j (η; r)

∂r
dη, (60)

Qij (r) = −Qji(r) = −
∫ 1

−1
�i(η; r)

∂�j (η; r)

∂r
dη.

The calculations of radial coupling matrix elements Hij (r) and Qij (r) were performed by a
special choice of value of matching point rmatch of their asymptotic form from section 3.4 to
achieve a relative computer accuracy using the code POTHMF realizing in FORTRAN [23].
Their plots are presented in figures 6 and 7. The peculiarities of behavior of the plots and the
corresponding asymptotics are considered in section 3.4.
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The discrete spectrum solutions obey the asymptotic boundary condition and the
orthonormality conditions

lim
r→∞ r2χ(i)(r) = 0 → χ(i)(rmax) = 0,

∫ rmax

0
r2(χ(i)(r))T χ(j)(r) dr = δij . (61)

The continuous spectrum solution χ(i)(r) satisfies the third-type boundary condition

dχ(r)

dr
= Rχ(r), r = rmax, (62)

where the nonsymmetrical matrix R is calculated using the method of [21].
Thus, within the framework of the Kantorovich approach the original problem is reduced

to the following steps.

• The calculation of the potential curves Ej(r) and eigenfunctions �j(θ; r) of the spectral
problem (51)–(53) for a given set of r ∈ ωr at fixed values m and γ = 1.

• The calculation of the derivatives ∂Φ(θ; r)/∂r and the corresponding integrals (see (60))
for the radial coupling matrices U(r) and Q(r).

• The calculation of the scaled energies ε̂ and radial wavefunctions χ(i)(r) as solutions
of 1D-eigenvalue problem (58)–(60) with the conditions (61) at fixed m, γ = 1 and the
effective charge Ẑ = Z/

√
γ . Analysis of the convergence of the solutions depending on

the number of channels jmax. Recalculation of the scaled energies into the initial ones
ε = ε̂γ or E = Êγ .

• The calculation of the matrix R and the reaction matrix K (equations (62) and (100)),
corresponding to the radial wavefunctions χ(i)(r), as solutions of 1D-eigenvalue problem
(58)–(60) with the condition (62) at fixed m, γ = 1, the effective charge Ẑ = Z/

√
γ and

the scaled energy ε̂ or Ê. The analysis of the convergence of the solutions depends on the
number of channels jmax.

Taking into account the above rules of correspondence and the asymptotic behavior of
the eigenvalues Ei(r) at large r (see also section 3.4), we can express the values of the
binding energy E via the eigenvalues εi of the problem (58)–(61) numbered by a vibration
quantum number, v = 0, 1, 2, . . ., in ascending order εi = εiv: εi0 < εi1 < εi2 < · · ·, as
E = (

εth
mi(γ ) − εiv

)/
2 (in au), where εth

mσi(γ ) is the true threshold shift (56) or the reduced
one εth

m(γ ) = γ (|m| + m + 1). Then for γ → 0 one can mark eigenvalues εi = εiv by a set
of quantum numbers (NNrmσ), where N is a principal quantum number of a free-hydrogen-
like atom and Nr is an integer that numerates in ascending order the zero-order degenerate
perturbation theory energy, εiv = 2E

(0)
N + 2E

(1)
NNrmσ γ 2 + O(γ 4) at fixed N. The corresponding

zero-order approximation states, |NNrmσ 〉, are determined by a linear combination of free-
hydrogen atom states |Nlm〉 and are labeled by Nr = 0, 2, . . . , 2[(N −1−|m|)/2] for σ = +1
and Nr = 1, 3, . . . , 2[(N − |m|)/2] − 1 for σ = −1. The latter can be marked also by a
set of spherical quantum numbers (Nlm) because of the correspondence of the number of
radial nodes, Nr = N − l − 1, of the free-hydrogen states and the number of changing sign,
[Nr/2], of coefficients of the linear combination |NNrmσ 〉. To show this correspondence
visually, we display in figures 8 and 9, as an example, a comparison of the three-dimensional
plots of the normalized wavefunctions in the zx plane of the free-hydrogen atom spherical
states |Nlm〉 and anisotropic zero-order approximation states |NNrmσ 〉 separated by parity
σ = ±1 for a manifold with N = 9 and m = 0, for which the convergence of the method for
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Figure 8. The three-dimensional plots of the normalized even wavefunctions (σ = +1) in the zx

plane of free-hydrogen atom states |Nlm〉 and zero-order approximation states |NNrmσ 〉 for a
manifold with N = 9 and m = 0.
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Figure 9. Same as in figure 8 but odd wavefunctions (σ = −1).

the energy of states by jmax has been studied in paper [9]. One can see that for anisotropic
states belong to the lower part of the spectrum the so-called vibrational states (with minimum
energy corrections E

(1)
NNrmσ ) are distributed mainly along the z-axis while for anisotropic

states belong to the upper part of the spectrum the so-called rotational states (with maximum
energy corrections E

(1)
NNrmσ ) are distributed mainly across the z-axis. An appearance of

anisotropy of such states in the photoionization cross-section calculations will be shown
explicitly in section 5. Indeed, for γ → 0 it is sufficient to cut jmax � 2[(N − |m|)/2]
in (58)–(61), while for γ → ∞ a diagonal approximation of equations (16) and (8) or an
effective approximation of equations (58)–(61) given in appendix B is sufficient to yield the
known adiabatic classification by [NρNz] or [NρN|z|] with fixed m, σ . Here adiabatic quantum
numbers Nz = 2N|z| + (1 − σ)/2 and N|z| can be determined as a sum of the number of nodes,
Nr , and the number of changing sign of coefficients of the linear combination |NNrmσ 〉, i.e.
N|z| = [(N + 1 − |m| − (1 − σ)/2)/2][(N − |m| − (1 − σ)/2)/2] + [Nr/2].
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3.2. Expansion of the matrix elements at small r

In accordance with [22] the asymptotic values of the potential curves Ej(r), radial matrix
elements Hjj ′(r) and Qjj ′(r) at small r characterized by l = 2j − 2 + |m| for even states
(σ = +1) and l = 2j − 1 + |m| for odd states (σ = −1) are given by expansion in powers of
r with finite l, l′:

Ej(r) = Ē
(0)
j + Ē

(2)
j r2 +

[kmax/4]∑
k=1

r4kĒ
(4k)
j , Hjj ′(r) =

[kmax/4]∑
k=2

r4k−2H̄
(4k−2)
jj ′ ,

Qjj ′(r) =
[kmax/4]∑

k=1

r4k−1Q̄
(4k−1)
jj ′ , r � min(l, l′)γ /2.

(63)

Note that all

Q̄
(4k−1)
jj ′ ≡ 0 and H̄

(4k−2)
jj ′ ≡ 0 if |j − j ′| > 2k. (64)

The calculation was performed using the algorithm implemented in MAPLE up to kmax = 36.
Below we display several first coefficients of the matrix elements expansions:

Ē
(0)
j = l(l + 1), Ē

(2)
j = γm, Ē

(4)
j = γ 2

2

l2 + l − 1 + m2

(2l − 1)(2l + 3)
,

Q̄
(3)
jj+2 = γ 2

2

√
(l + 1)2 − m2

√
(l + 2)2 − m2

√
2l + 1(2l + 3)2

√
2l + 5

,

H̄
(6)
jj = γ 4

2
((16l4 + 32l3 + 248l2 + 232l + 201)m4

+ (−10l2 − 224l4 − 96l5 + 118l − 288l3 − 32l6 − 195)m2 + 16l8 + 64l7

+ 46l + 40l6 − 127l4 − 104l5 + 71l2 − 6l3 − 6)/((2l − 3)(2l − 1)4(2l + 3)4(2l + 5)),

H̄
(6)
jj+4 = −γ 4

√
(l + 1)2 − m2

√
(l + 2)2 − m2

√
(l + 3)2 − m2

√
(l + 4)2 − m2

4
√

2l + 1(2l + 3)2(2l + 5)(2l + 7)2
√

2l + 9
.

(65)

Such asymptotic behavior of the effective potentials allows us to find regular and bound
solutions at r → 0 that satisfied the boundary conditions (59).

3.3. Expansion of the regular solutions in power series

The asymptotics of the regular solutions χ
(io)
j (r) ≡ χjio (r), j = 1, . . . , jmax, io =

1, . . . , No � jmax of equation (58) are sought as expansions in powers of r up to an finite order
kmax :

χjio (r) = cio

kmax∑
k=0

χ
(k)
jio

rµio +k, χ
(0)
j io

= δjio , χ
(k<0)
j io

≡ 0, (66)

where cio are normalized constants, µio is an unknown characteristic parameter. Substituting
expansion (66) into (58) with equations (63)–(65) taken into account, we obtain the following
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system of recurrence relations for the set of the unknown coefficients χ
(k)
jio

:

−(l′ + 1 + µio + k)(µio − l′ + k)χ
(k)
jio

= 2Zχ
(k−1)
j io

− (mγ − ε)χ
(k−2)
j io

−
k∑

s=4

Ē
(s)
j χ

(k−s)
j io

−
k−2∑
s=4

H̄
(s)
jj χ

(k−s−2)
j io

−
k−1∑
s=3

min(jmax,io+[s/4])∑
j ′=max(1,io−[s/4]),j ′ �=j

(2l + 2k − s)Q̄
(s)
jj ′χ

(k−s−1)
j ′io

−
k−2∑
s=4

min(jmax,io+[s/4])∑
j ′=max(1,io−[s/4]),j ′ �=j

H̄
(s)
jj ′ χ

(k−s−2)
j ′io ,

(67)

where the indices l′ and l are defined by

l′ = 2(j − 1) + |m| + (1 − σ)/2, l = 2(io − 1) + |m| + (1 − σ)/2. (68)

As follows from equations (66) and (67) at k = 0, the conventional characteristic equation
gives two roots for the unknown µio : µio = −l − 1 and µio = l. The value µio = −l − 1
corresponds to irregular unbound solutions and is not considered here. The value µio = l

corresponds to the required regular and bound solutions.
Note that the components of the vector

{
χ

(k)
jio

}jmax

j=1 at fixed io in the lhs of equation (67)

is equal to zero if j − io = k. In this case we can put χ
(k)
io+kio

= 0, because this term will
be determined as the leading term of the asymptotic form of the (io + k) th solution. A more
detailed analysis of (67) with the account of (64) shows that the rhs of equation (67) is equal
to zero and all χ

(k)
jio

are equal to zero if |j − io| > k/2.
Thus, the system (67) can be solved sequentially for k = 1, 2, . . . , kmax. Below we

display several first non-zero coefficients of the regular solutions expansions:

χ
(0)
ioio

= 1, χ
(1)
ioio

= − Z

l + 1
, χ

(2)
ioio

= −−2Z2 + (ε − mγ )(l + 1)

2(l + 1)(2l + 3)
,

χ
(3)
ioio

= Z(−2Z2 + (ε − mγ )(3l + 4))

6(l + 1)(l + 2)(2l + 3)
,

χ
(4)
io−2io

= Q̄
(3)
io−2io

(2l + 5)

6(2l + 3)
,

χ
(4)
ioio

= Ē
(4)
io

4(2l + 5)
+

(ε − mγ )2

8(2l + 3)(2l + 5)
+

Z4 − Z2(ε − mγ )(3l + 5)

6(l + 1)(l + 2)(2l + 3)(2l + 5)
,

χ
(4)
io+2io

= Q̄
(3)
io+2io

(2l + 5)

2(2l + 7)
.

(69)

In the case of γ = 0 these coefficients transform into conventional ones for the expansion
of the free regular Coulomb function Fl(r) up to the factor r−1 with a known value of the
coefficient cio (γ = 0) = cl from [20]. The latter gives us the opportunity to estimate the ratio∣∣cio (γ )/cio (0)

∣∣2 of a probability density,
∣∣cio (γ )

∣∣2, extracted from the calculated solution of
equations (58)–(60) with boundary conditions (61) (or (62)) using asymptotic (66) and a free
probability density,

∣∣cio (0)
∣∣2, in the vicinity of r = 0.
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3.4. Asymptotic form of basis functions and matrix elements at large r

Let us describe briefly the evaluation of the matrix elements at large r as expansions in powers
of p−1 till the order of kmax. For this purpose we use the eigenfunctions labeled by v̂ =←→ and
localized at large r in the vicinity of η = ±1 (see figure 3)

Φmσ=±1(η; r) = Φm→(η; r) ± Φm←(η; r)√
2

. (70)

These functions have Nρ ≡ n = 0, 1, 2, . . . , nodes in the subintervals 0 < η < 1
and −1 < η < 0, Nρ = Nη/2 for even states, σ = +1 and Nρ = (Nη − 1)/2 for
the odd states, σ = −1, Nη being the number of nodes of Φmσ (η; r) in the interval
−1 < η < 1 and the parity σ = (−1)Nη . Note that Φm←(η; r) = Φm→(−η; r) and
Φm←(η < 0; r) = Φm→(η > 0; r) = O(exp(−p(1 + |η|)) at r → ∞ and |η| ∼ 1 which will
be used in the construction of the scattering wavefunctions defined by equation (105).

We find the matrix elements expanded in inverse powers of r with finite j = nl − 1, j ′ =
nr − 1 and with the exponential terms omitted [22]

r−2Ej(r) = E
(0)
j +

kmax∑
k=1

r−2kE
(2k)
j , Hjj ′(r) =

kmax∑
k=1

r−2kH
(2k)
jj ′ ,

Qjj ′(r) =
kmax∑
k=1

r−2k+1Q
(2k−1)
jj ′ , r 	 max(nl, nr)γ /2.

(71)

The calculation was performed using the algorithm describing in appendix A and implemented
in MAPLE up to kmax = 8. Below we display the first several coefficients of the potential
curves Ej(r) at fixed m:

E
(0)
j = γ (2n + |m| + m + 1),

E
(2)
j = −2n2 − 2n − 1 − 2|m|n − |m|, (72)

E
(4)
j = (2γ )−1(−4n3 − 6n2 − 4n − 6|m|n2 − 6|m|n − 2m2n − 2|m| − m2 − 1),

and the matrix elements Qjj ′(r),Hjj ′(r):

Q
(1)
jj ′ = (nr − nl)

√
n + 1

√
n + |m| + 1δ|nl−nr |,1,

Q
(3)
jj ′ = (4γ )−1(nr − nl)

√
n + 1

√
n + |m| + 1

(
2(2n + |m| + 2)δ|nl−nr |,1

+
√

n + 2
√

n + |m| + 2δ|nl−nr |,2
)
, (73)

H
(2)
jj ′ = (2n2 + 2n + 2|m|n + |m| + 1)δ|nl−nr |,0

−
√

n + 1
√

n + |m| + 1
√

n + 2
√

n + |m| + 2δ|nl−nr |,2,

H
(4)
jj ′ = γ −1

(
(2n + |m| + 1)(2n2 + 2n + 2|m|n + |m| + 2)δ|nl−nr |,0

+
√

n + 1
√

n + |m| + 1(n2 + 2n + |m|n + |m| + 2)δ|nl−nr |,1
−
√

n + 1
√

n + |m| + 1
√

n + 2
√

n + |m| + 2(2n + |m| + 3)δ|nl−nr |,2
−
√

n + 1
√

n + |m| + 1
√

n + 2
√

n + |m| + 2
√

n + 3
√

n + |m| + 3δ|nl−nr |,3
)
, (74)

where n = min(nl, nr). Note that all Q
(2k+1)
jj ′ ≡ 0 and H

(2k)
jj ′ ≡ 0 if |j − j ′| > k + 1.

Moreover, for second-order coefficients the identity E
(2)
j + H

(2)
jj = 0 takes place, i.e., at large

r the centrifugal terms are eliminated from equation (58). It means that the leading terms
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of the radial solutions χjio (r) have the asymptotic form of the Coulomb functions with zero
angular momentum. If the scaled radial variable r̂ is used, we put γ = 1 and use the effective
charge Ẑ and the scaled energy ε̂ = ε/γ or Ê = E/γ in the above expressions. Note that
the convergence domain of expansions (63) and (71) at small and large r is limited to the
range of avoided crossing of the eigenvalues and maxima of the matrix elements versus r
(see figures 4–7), that correspond to the known branching points in the complex plane of
the parameter p [30]. This remark can be taken into account in the construction of the
corresponding asymptotic solutions. To show explicitly the region where expansion (71)
is valid the asymptotic values of potentials and matrix elements are displayed by dotted
lines in figures 4–7. One can compare them with the corresponding numerical values
calculated as mentioned above by the computer relative accuracy in the finite interval of
the radial variable. The exponentially small corrections improving the convergence can
be calculated by means of the additional series expansion of the solution in the region
D2 = [0, 1 − η2], η2 < η1, η2 = o(p−1/2−ε) [24].

3.5. Asymptotic radial solution with exponential and inverse power series

The radial solutions χ
(io)
j (r) ≡ χjio (r), j = 1, . . . , jmax, io = 1, . . . , No � jmax of

equation (58) at large r without the centrifugal terms (i.e., with zero angular momentum)
have the asymptotic form

χ
(as)
jio

(r) = exp(ıpio r + ıζ ln(2pior) + ıδc
io
)

2r
√

pio

δjio , (75)

where pio is the relative momentum in the channel, ζ ≡ ζio is a Zommerfeld-type parameter,
δc
io

= arg �(1−ıζ ) is the phase defined by the known Coulomb phase shift. The values of these
characteristic parameters will be adapted to find the formal asymptotic solutions expanding
the functions φjio (r) in inverse powers of r:

χjio (r) = φjio (r)χ
(as)
ioio

(r), φjio (r) =
kmax∑
k=0

φ
(k)
jio

r−k. (76)

Substituting expansion (76) into equation (58) and equating the coefficients at the same powers
of r we arrive at the recurrence relations for the unknown coefficients φ

(k)
jio

[22](
p2

io
− 2E + E

(0)
j

)
φ

(k)
jio

+ (2pioζ − 2Z + 2ıpio (k − 1))φ
(k−1)
j io

+ (ζ − 2ı + ık)(ζ − ı + ık)φ
(k−2)
j io

+
k∑

k′=1

(
E

(k′)
j + H

(k′)
jj

)
φ

(k−k′)
j io

=
jmax∑

j ′=1,j ′ �=j

k∑
k′=1

(−2ıpioQ
(k′)
jj ′ + (2k − k′ − 1 − 2ıζ )Q

(k′−1)
jj ′ − H

(k′)
jj ′

)
φ

(k−k′)
j ′io . (77)

From the first three equations of the set (77) for φ
(0)
ioio

, φ
(0)
j0io

, φ
(1)
ioio

we get the leading terms of the
eigenfunction, the eigenvalue of the relative momentum, pio , and the characteristic parameter,
ζ , i.e., the initial data for solving the recurrence equations (77),

φ
(0)
j0io

= δj0io , p2
io

= 2E − E
(0)
io

→ pio =
√

2E − E
(0)
io

, ζ = Z

pio

. (78)

For open channels p2
io

� 0, while for closed channels p2
io

< 0. Suppose there are No � jmax

open channels, i.e., p2
io

� 0 for io = 1, . . . , No and p2
io

< 0 for io = No + 1, . . . , jmax.
Substituting these initial data into the sequent equations of the set (77), we get a step-by-step
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procedure for determining the coefficients φ
(k)
jio

till k = kmax. For example, for k = 1 the
coefficients have the form

φ
(1)
j1io

= 2ıpioQ
(1)
j1io

E
(0)
io

− E
(0)
j1

, φ
(1)
ioio

= ı(Z2 + ıZpio )

2p3
io

−
min(jmax,io+1)∑

j1=max(1,io−1),j1 �=io

Q
(1)
ioj1

φ
(1)
j1io

. (79)

Substituting the asymptotic expressions (71) into equation (79), one can express the coefficients
φ

(k)
jio

explicitly via the number of the state (or of the channel) io = no + 1 and the number of
the current equation j = 1, . . . , jmax. Note that if jmax � io + k, then all nonzero terms in the
sums in equations (79) will be included into the evaluation of each nonzero element φ

(k)
jio

of
the order k. The calculation was performed using the algorithm implemented in MAPLE up
to kmax = 15. For example, at jmax � io + k and k = 0, 1 the substitution of (73) into (79)
yields

φ
(0)
ioio

= 1,

φ
(1)
io−1io

= ı
pio

√
no

√
no + |m|

γ
,

φ
(1)
ioio

=
[
ı

Z2

2p3
io

− Z

2p2
io

]
− ı

pio (2no + |m| + 1)

γ
,

φ
(1)
io+1io

= ı
pio

√
no + 1

√
no + |m| + 1

γ
.

(80)

If we use the scaled radial variable r̂ , we put γ = 1 and use the effective charge Ẑ, the
scaled energy ε̂ = ε/γ and the momentum p̂io = pio/

√
γ , (ζ = ζ̂ = Ẑ/p̂io ) in the above

expressions. For r̂max 	 max
(
Ẑ2

/(
2p̂2

io

)
, no

/
2
)

we can use expansion (75) .

3.6. Asymptotic radial solution with Coulomb functions and inverse power series

Now let us consider the asymptotic solution χ
(io)
j (r) ≡ χjio (r), j = 1, . . . , jmax, io =

1, . . . , No � jmax of equation (58) following [32]:

χjio (r) = R
(
pio , r

)
φjio (r) +

dR
(
pio , r

)
dr

ψjio (r), (81)

where R
(
pio , r

) = p
−1/2
io

r−1
(
ıF0

(
pio , r

)
+ G0

(
pio , r

))/
2, F0

(
pio , r

)
and G0

(
pio , r

)
are the

Coulomb regular and irregular functions, respectively [20], that satisfy the condition

G0
(
pio , r

)dF0
(
pio , r

)
dr

− dG0
(
pio , r

)
dr

F0
(
pio , r

) = pio . (82)

The function R
(
pio , r

)
satisfies the differential equation

d2R
(
pio , r

)
dr2

+
2

r

dR
(
pio , r

)
dr

+

(
p2

io
+

2Z

r

)
R
(
pio , r

) = 0. (83)

Substituting function (81) into equation (58), using equation (83) and extracting the coefficients
for the Coulomb function and its derivative, we arrive at an axillary set of two coupled
differential equations with respect to the unknown functions φjio (r)ψjio (r) and the relative
momentum pio [22]. Then we expand the functions φjio (r) and ψjio (r) in inverse powers of r:

φjio (r) =
kmax∑
k=0

φ
(k)
jio

r−k, ψjio (r) =
kmax∑
k=0

ψ
(k)
jio

r−k. (84)
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After substituting expansions (84) into these axillary equations and equating the coefficients
at the same powers of r we arrive at the recurrence relations for the unknown coefficients φ

(k)
jio

and ψ
(k)
jio

:

(
p2

io
− 2E + E

(0)
j

)
φ

(k)
jio

− 2p2
io
(k − 1)ψ

(k−1)
j io

− (k − 2)(k − 3)φ
(k−2)
j io

− 2Z(2k − 3)ψ
(k−2)
j io

+
k∑

k′=1

(
E

(k′)
j + H

(k′)
jj

)
φ

(k−k′)
j io

=
jmax∑

j ′=1,j ′ �=j

k∑
k′=1

[(
(2k − k′ − 3)Q

(k′−1)
jj ′ − H

(k′)
jj ′

)
φ

(k−k′)
j ′io

+
(
2p2

io
Q

(k′)
jj ′ + 4ZQ

(k′−1)
jj ′

)
ψ

(k−k′)
j ′io

]
, (85)

(
p2

io
− 2E + E

(0)
j

)
ψ

(k)
jio

+ 2(k − 1)φ
(k−1)
j io

− k(k − 1)ψ
(k−2)
j io

+
k∑

k′=1

(
E

(k′)
j + H

(k′)
jj

)
ψ

(k−k′)
j io

=
jmax∑

j ′=1,j ′ �=j

k∑
k′=1

[(
(2k − k′ + 1)Q

(k′−1)
jj ′ − H

(k′)
jj ′

)
ψ

(k−k′)
j ′io − 2Q

(k′)
jj ′ φ

(k−k′)
j ′io

]
. (86)

The summation indices jk, k = 0, 1, . . . , kmax possess integer values, except io and jk+1, i.e.,
jk = 1, 2, . . . , jmax, jk �= io, jk �= jk+1. From the first four equations of the set (85) and (86)
for φ

(0)
ioio

, φ
(0)
j0io

, ψ
(0)
ioio

, ψ
(0)
j0io

we get the leading terms of the eigenfunction and eigenvalue of the
relative momentum, pio , i.e., the initial data for solving the recurrence equations (85) and (86),

φ
(0)
j0io

= δj0io , ψ
(0)
j0io

= 0, p2
io

= 2E − E
(0)
io

, (87)

that correspond to the leading term of χjio (r) satisfying the asymptotic expansion (75) at large
r. Substituting these initial data into equations (85) and (86), we get a step-by-step procedure
for the coefficients φ

(k)
jio

and ψ
(k)
jio

till k = kmax. For example, for k = 1 these coefficients have
the form

φ
(1)
j1io

= 0, ψ
(1)
j1io

= 2Q
(1)
j1io

E
(0)
io

− E
(0)
j1

,

φ
(1)
ioio

= 0, ψ
(1)
ioio

= −
min(jmax,io+1)∑

j0=max(1,io−1),j0 �=io

Q
(1)
ioj0

ψ
(1)
j0io

.

(88)

Substituting the asymptotic expressions (71) into equation (88), we get the explicit expression
of the coefficients φ

(k)
jio

and ψ
(k)
jio

via the number of the state (or of the channel) io = no + 1
and the number of the current equation j = 1, . . . , jmax. The calculation was performed using
the algorithm implemented in MAPLE up to kmax = 15. For example, at jmax � io + k and
k = 0, 1, substituting (73) into (88) such elements take the form

φ
(0)
ioio

= 1, ψ
(0)
ioio

= 0,

φ
(1)
io−1io

= 0, ψ
(1)
io−1io

=
√

no

√
no + |m|
γ

,

φ
(1)
ioio

= 0, ψ
(1)
ioio

= −2no + |m| + 1

γ
,

φ
(1)
io+1io

= 0, ψ
(1)
io+1io

=
√

no + 1
√

no + |m| + 1

γ
.

(89)
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If we use the scaled radial variable r̂ , we put γ = 1 and use the effective charge Ẑ and the
scaled momentum p̂io

(
ζ = Ẑ/p̂io

)
in the above expressions.

Similar to [32], in each order k the recurrence relation (85) includes implicitly only
the factor Z/pio , while the recurrence relation (77) includes explicitly the quadratic factor(
Z/pio

)2
. This allows us to expect that for small values of p̂io or large values of the effective

charge Ẑ and, therefore, of the parameter |ζ | = |Ẑ/p̂io | 	 1, one can use expansion (81) at
as substantially smaller distance r̂max/|ζ | rather than expansion (75) at the essentially larger
distance r̂max.

Taking the convergence domain of the matrix elements into account, we find that the
convergence domain of expansion (81) is r̂max 	 no/2 and r̂max 	 Ẑ/p̂io (2no + |m| + 1), as
follows from the asymptotic behavior of the matrix elements which does not depend on pio .
This is the main goal of expansion (81).

In addition, it should be noted that at large r the linearly independent matrix functions
χ(r) ≡ {χ(io)(r)}No

io=1 of (76) and (81) satisfy the Wronskian-type relation

Wr(Q(r); χ∗(r), χ(r)) = ı

2
Ioo, (90)

where Wr(•; χ∗(r), χ(r)) is a generalized Wronskian with the long derivative defined as

Wr(•; χ∗(r), χ(r)) = r2

[
(χ∗(r))T

(
dχ(r)

dr
− •χ(r)

)
−
(

dχ∗(r)
dr

− •χ∗(r)
)T

χ(r)

]
.

(91)

These relations are used to analyze the desirable accuracy of the above expansion [23].

3.7. Correspondence of asymptotic total wavefunctions at large r and |z|
To clarify the geometric sense of expansion (81) and (84) we recalculate the first four
coefficients (88) and (89) for jmax � io + 1 using the functions |j 〉 = �̃j (ρ) =
limr→∞,|η|∼1 r−1�j(|η|; r) from (56):

φ
(1)
j1io

= 0,

ψ
(1)
j1io

= −1

2
〈j1|ρ2|io〉 =

√
no

√
no + |m|
γ

δj1,io−1 +

√
no + 1

√
no + |m| + 1

γ
δj1,io+1,

φ
(1)
ioio

= 0, ψ
(1)
ioio

= −1

2
〈io|ρ2|io〉 = −2no + |m| + 1

γ
.

(92)

Taking into account the orthogonality 〈j |io〉 = 〈
�̃m

j (ρ)
∣∣�̃m

io
(ρ)

〉 = δjio and completeness∑
j

∣∣�̃m
j (ρ ′)

〉〈
�̃m

j (ρ)
∣∣ = δ(ρ ′ −ρ) of the basis functions (56), the asymptotic form of the total

wavefunction at pioρ
2/(2r) � 1 can be written as

�mv̂(r, η) = r
∑

j

∣∣�̃m
j (ρ)

〉 [〈
�̃m

j (ρ)
∣∣�̃m

io
(ρ)

〉 − 1

2r

〈
�̃m

j (ρ)
∣∣ρ2

∣∣�̃m
io
(ρ)

〉 d

dr

]
χ

(as)
ioio

(
pio , r

)
= r

∑
j

∣∣�̃m
j (ρ)

〉〈
�̃m

j (ρ)
∣∣ [∣∣�̃m

io
(ρ)

〉 − 1

2r
ρ2
∣∣�̃m

io
(ρ)

〉 d

dr

]
χ

(as)
ioio

(
pio , r

)
≈ r�̃m

io
(ρ)χ

(as)
ioio

(
pio , r(1 − ρ2/(2r2))

) ≈ 1

2
�̃m

io
(ρ)X

(+)
ioio

(|z|) exp
(
ıδc

io

)
. (93)

In the last transformation we use the relation |z| = r(1−ρ2/(2r2))+O(r−2) and the definitions
(21), (57) and (27). Thus, the matrix of coefficients (81), (84) and (89) corresponds to the
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overlap matrix between the asymptotic fundamental solutions (16) and (27) of equation (2)
in cylindrical coordinates z = r cos θ, ρ = r sin θ at large |z| and the asymptotic basis
functions of the independent variable η = cos θ at large r. In appendix B we present detailed
explanation of the effective approximation in the KM including the explicit construction of
the corresponding effective mass and potentials versus the radial variable r and the results of
calculation of their asymptotic values up to the order of r−4.

4. Scattering states and photoionization cross sections

Consider the ejected electron above the first threshold εth
m1(γ ) = εth

m(γ ) = γ (|m| + m + 1).
We express the corresponding eigenfunction �Emσ

i (r, η) of the continuous spectrum with the
energy ε = 2E as

�Emσ
i (r, η) =

jmax∑
j=1

�mσ
j (η; r)χ̂

(mσ)
ji (E, r), i = 1, . . . , No, (94)

where χ̂(mσ)(E, r) is the radial part of the ‘incoming’ or eigenchannel wavefunction. The
normalization condition for �Emσ

i (r, η) is

〈
�Emσ

i (r, η)
∣∣�E′m′σ ′

i ′ (r, η)
〉 = jmax∑

j=1

∫ ∞

0
r2dr

(
χ̂

(mσ)
ji (E, r)

)∗
χ̂

(m′σ ′)
j i ′ (E′, r)

= δ(E − E′)δmm′δσσ ′δii ′ . (95)

The function χ̂(mσ)(E, r) is expressed as

χ̂(mσ)(E, r) =
√

2

π
χ(p)(r)C cos δ. (96)

The function χ(p)(r) is a numerical solution of equation (58) that satisfies the ‘standing-wave’
boundary conditions (62) and has the standard asymptotic form [33]

χ(p)(r) = χs(r) + χc(r)K, KC = C tan δ, CCT = CT C = Ioo. (97)

Here χs(r) = 2 Im(χ(r)) and χc(r) = 2 Re(χ(r)), χ(r) is the asymptotic solution defined in
section 3.5 or 3.6, K ≡ Kσ is the numerical short-range reaction matrix with the eigenvalue
tan δ and the orthogonal matrix C of the corresponding eigenvectors. The regular and irregular
functions satisfy the generalized Wronskian relation (91) at large r

Wr(Q(r); χc(r), χs(r)) = Ioo. (98)

Using R-matrix calculus [21], we obtain the equation expressing the reaction matrix K via the
matrix R at r = rmax(

Rχc(r) − dχc(r)

dr

)
K =

(
dχs(r)

dr
− Rχs(r)

)
. (99)

When some channels are closed, the matrices in equation (99) are rectangular. Hence, the
reaction matrix K may be presented as

K = −X−1(rmax)Y(rmax), (100)

where

X(r) =
(

dχc(r)

dr
− Rχc(r)

)
oo

, Y(r) =
(

dχs(r)

dr
− Rχs(r)

)
oo

, (101)

are square No × No matrices.
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The radial part of the ‘incoming’ wavefunction is expressed via the numerical ‘standing’
wavefunction and the short-range reaction matrix K by the relation

χ̂(mσ)(E, r) =
√

2

π
χ−(r) = ı

√
2

π
χ(p)(r)(Ioo + ıK)−1, (102)

and has the asymptotic form

χ̂(mσ)(E, r) =
√

2

π
(χ(r) − χ∗(r)S†). (103)

Here S is the short-range scattering matrix, expressed via the scattering matrix Šσ (31) and
Coulomb phase shift δc as S ≡ Sσ = exp(−ıδc)Šσ exp(−ıδc), for which

S†S = SS† = Ioo, K = ı(Ioo + S)−1(Ioo − S), S = (Ioo + ıK)(Ioo − ıK)−1. (104)

The total wavefunction has the asymptotic form reverse to the common scattering problem,
namely, ‘incident wave + ingoing wave’,

Ψ(−)
Emv̂(r, η) ≡ Ψ(−)

Em
→←(r, η) = 1√

2
(ΨEmσ=+1(r, η) ± ΨEmσ=−1(r, η)) exp(−ıδc), (105)

that corresponds to the function (36) (see details in appendix C). Now the expression (38) for
the cross section σd

Nlm(ω) of photoionization by the light linearly polarized along the axis z

can be written as

σd
Nlm(ω) = 4π2αω

No∑
i=1

∣∣Dmσσ ′
i,N,l (E)

∣∣2a2
0, (106)

where Dmσσ ′
i,N,l (E) ≡ Dmσσ ′

i,i ′,v′ (E) are the matrix elements of the dipole moment

Dmσσ ′
i,i ′,v′ (E) = 〈

�Emσ=∓1
i (r, η)

∣∣rη∣∣�mσ ′=±1
i ′v′ (r, η)

〉 = jmax∑
j=1

∫ rmax

0
r2 drχ̂

(mσ=∓1)
j i (E, r)d

(mσσ ′)
j i ′v′ (r),

(107)

and d
(mσσ ′)
j i ′v′ (r) are the matrix elements of the partial dipole moments

d
(mσσ ′)
j i ′v′ (r) =

jmax∑
j ′=1

〈
�mσ=∓1

j (η; r)
∣∣rη∣∣�mσ ′=±1

j ′ (η; r)
〉
η
χ

(mσ ′=±1)
j ′i ′v′ (r). (108)

In the above expressions ω = E − ENlm is the frequency of radiation, ENlm ≡ Emσ ′i ′v′ is
the energy of the initial bound state |Nlm〉 = �mσ ′

i ′v′ (r, η) below half of the first true threshold
shift εth

m1(γ )/2 from formula (56) at i ′ = 1. The continuous spectrum solution χ(p)(r) having
the asymptotic form of a ‘standing’ wave and the reaction matrix K required for calculating
(96) or (103), as well as the discrete spectrum solution χ(r) and the eigenvalue Emσ ′i ′=1v′ ,
can be calculated using the program KANTBP [33]. Figure 10 shows an example of the
wavefunctions of the continuous spectrum calculated using equations (94)–(96) in the basis
of functions (51) shown in figure 3 for σ = −1, Z = 1,m = 0 and γ = 1 with the energy
E = 1.7 au above the second threshold 1/2εth

m2 = 1.5. One can see that equations (96) and
(103) yield the same result when used to calculate the absolute value in equation (106), as well
as equation (105) performing the summation over v̂ in accordance with equation (38). Hence,
equation (96) is preferable for using real arithmetic. For the light circularly polarized in the
plane xOy similar expression can be written using (42) with (�e±�r) = r√

2

√
1 − η2 exp(±ıϕ).
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Figure 10. Profiles of wavefunctions �1 and �2 in the zx plane of the first (a) and the second (b)
open channels having the asymptotic form (96) for σ = −1, Z = 1,m = 0 and γ = 1 with the
energy E = 1.7 au above the second threshold 1/2εth

m2 = 1.5.
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Figure 11. Cross sections of photoionization from the states 1s0 (a) and 3d0 (b) versus the energy
for γ = 1 × 10−1, and for the final state with σ = −1, Z = 1, m = 0. The arrows indicate the
successive Landau thresholds Ej = 1/2εth

mj (71).

5. Numerical results and discussion

In our calculations we used the following values of the physical constants [34]: 1 cm−1 =
4.556 33 × 10−6 au, the Bohr radius a0 = 5.291 77 × 10−11 m and the fine-structure constant
α = 7.297 35 × 10−3.

Figure 11 displays the calculated photoionization cross section from the states 1s0 and 3d0

at B0 = 2.35 × 104T (γ = 1 × 10−1) in the energy interval from E = 0.05 au to E = 0.25 au
with the final state σ = −1,m = 0. We used ten eigenfunctions (jmax = 10) of the problem
(51)–(53) which requires to solve ten equations of the system (58). The finite element grids
of r̂ = √

γ r have been chosen as 0 (200) 3 (200) 20 (200) 100 for the discrete spectrum and 0
(200) 3 (200) 20 (200) 100 (1000) 1000 for the continuous one. Enclosed in parentheses are the
numbers of finite elements of the order k = 4 in each interval. The number of nodes in the grids
is 2400 and 6401, so that the maximum number of unknowns in equation (58) is 24 000 and
64 010, respectively. Figure 12 displays the continuous spectrum states (in scaled coordinates)
with the energies E = 0.0596 au and E = 0.0903 au that correspond to δo = 0 and δo = π/2,
respectively. The corresponding series of quasi-stationary states imbedded in the continuum,
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Figure 12. Profiles of the eigenfunctions �Emσ
1 in the zx plane of the continuous spectrum with

σ = −1, Z = 1, m = 0 and γ = 1 × 10−1. The states with the energies E = 0.0596 au and
E = 0.0903 au correspond to δo = 0 and δo = π/2, respectively.
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Figure 13. Phase shift δ of odd (a) and even (b) continuum states for Z = 1, m = 0 and
γ = 1 × 10−1 versus (Ẽ2 − 2E)−1/2. The arrow points at the energy of the first Landau threshold
(Ẽ2 − Ẽ1)

−1/2 = 51/2 ≈ 2.236.

defined by the short-range phase shifts δo = noπ + π/2, are plotted in figure 13(a) versus
(Ẽ2−2E)−1/2 = no +�no

, where Ẽj = εth
mj . The existence of such states allows one to explain

the nonmonotonic dependence of the photoionization cross section upon the energy between
the thresholds. The short-range phase shifts δe = neπ + π/2 of the even continuum states are
plotted in figure 13(b) versus (Ẽ2 − 2E)−1/2 = ne + �ne

. The corresponding transmission
|T̂|2 = sin2(δe − δo) and reflection |R̂|2 = cos2(δe − δo) coefficients (31) versus the energy E
(a) and (Ẽ2 − 2E)−1/2 (b) are shown in figure 14. Nonmonotonic behavior of |T̂| and |R̂| is
seen to include the cases of resonance transmission |T̂| = 1 and |R̂| = 0 and total reflection
|T̂| = 0 and |R̂| = 1. As an example, we display the absolute values of the total wavefunctions
(105) of the continuous spectrum Ψ(−)

Em→ and Ψ(−)
Em← in figure 15 (in scaled coordinates). The

profiles of the states with the energy E = 0.05885 au and E = 0.11692 au demonstrate the
resonance transmission and total reflection, respectively. They agree with appendix C and
with the proper longitudinal solutions combined with the left and right basis functions (see
figures 2(b) and 5).

Figure 16 demonstrates the dependence on the energy E (a) and (Ẽ2 − 2E)−1/2 (b) of
the following quantities: the squared modulus of the matrix element (SMME) Ť11 = S11 − 1,
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Figure 14. Transmission |T̂|2 and reflection |R̂|2 coefficients, even δe and odd δo phase shifts
versus the energy E (a) and (Ẽ2 − 2E)−1/2 (b) for continuum states with Z = 1, m = 0 and
γ = 1 × 10−1.
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Figure 15. Profiles of total wavefunctions |�(−)
Em→| (a, c) and |�(−)

Em←| (b, d) in the zx plane of
the continuous spectrum with Z = 1,m = 0 and γ = 1 × 10−1. The states with the energy
E = 0.05885 au (a, b) correspond to the resonance transmission, while those with the energy
E = 0.11692 au (c, d) correspond to the total reflection.

characterizing the elastic scattering of the electron, the odd phase shift (OPS) δo, and the cross
section σd(ω) (106) of photoionization from the initial even state 1s0 ((Nlm) = (100)) with
the energy E100 = −0.497 526 480 40 au, ω = E − E100 being the frequency of radiation.
The final scattering state with σ = −1 and m = 0 in the magnetic field B0 = 2.35 ×
104 T (γ = 1 × 10−1) is considered. The first two quantities are normalized to fit the plot
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Figure 16. Squared modulus of the matrix element Ť11, multiplied by 7/4, odd phase shift δo

multiplied by 14/π and cross section σd(ω) (106) of photoionization from the initial state 1s0 versus
the energy E (a) and (Ẽ2 − 2E)−1/2 (b) for the final scattering state with σ = −1, Z = 1, m = 0
and γ = 1 × 10−1.

range. The comparison of the three curves shows that the maxima of the SMME of elastic
scattering coincide with the jumps of the OPS. The minima of SMME coincide with zeros of
OPS exactly, while the minima of the photoionization cross section (PCS) occur with some
delay. Figure 16(b) shows that in the scale (Ẽ2 − 2E)−1/2 SMME is periodical, while PCS
is quasi-periodical. The maxima of PCS occur after each phase jump when the OPS has
approximately the same value of −0.35/π , while the maxima of SMME coincide exactly
with these jumps that, as mentioned above, correspond to quasi-stationary states imbedded
in the continuum. The minima of PCS correspond approximately to the same value 0.1/π

of the phase. The figures show only the first fragment of the infinite sequence of maxima
and minima that corresponds to the existence of the infinite and countable series of Coulomb
quasi-stationary states below the second threshold, induced by the confinement potential of
the magnetic field, in accordance with the multichannel quantum defect theory.

For the initial state 1s0 in the whole energy interval the results are in good agreement with
those of R-matrix calculations within the frameworks of the multichannel quantum defect
theory [6]. We also compared our results with those of the complex-rotation method using the
expansion over the basic set of 10 000 complex spherical Sturmian-type functions [11] and the
basic set of 450 mixed Slater-Landau functions [8]. In this case the agreement is good only
between the thresholds, but not near them. The agreement with [6] proves that our method is
valid to describe the true threshold behavior of the photoionization cross section, i.e., one of
the goals of elaborating the new approach is achieved.

Figure 17 displays the cross section of photoionization by the light linearly polarized
along the axis z from the vibrational state 3d0 (a) and the rotational state 3s0 (b) at B0 =
6.10 T (γ = 2.595 × 10−5) in the energy interval between E = 6.0 cm−1 and E = 8.0 cm−1.
In this case we increased jmax up to 35 and the finite element grids of r̂ = √

γ r were chosen
as 0 (200) 0.03 (200) 0.2 (200) 1 for the discrete spectrum and 0 (200) 0.03 (200) 0.2 (200) 1
(2000) 100 (4000) 1000 for the continuous one. The number of nodes in these grids is 2400
and 26 401, respectively. The corresponding maximal number of unknowns in equation (58)
is 84 000 and 924 035. Figure 18(a) shows the absolute maximum values of the continuum
wavefunctions χ̂

(01)
j1 (E, r̂) at E = 6.0 cm−1. We calculated the cross sections with the
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Figure 17. The cross section of photoionization from the states 3d0 (a) and 3s0 (b) versus the
energy for γ = 2.595 × 10−5 and for the final state with σ = −1, Z = 1, m = 0.
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Figure 18. (a) Absolute maximum values, max χj1, of the continuum wavefunctions χ̂
(01)
j1 (E, r̂)

at γ = 2.595 × 10−5, E = 6.0 cm−1 and jmax = 35. (b) Laser-stimulated radiative recombination
rate into the bound state N ′ = 3, l′ = 0, m′ = 0 versus the energy of the initially free positron.

energy step 5 × 10−4 cm−1 in all the region except the vicinity of peaks, where the step was
5 × 10−6 cm−1.

The relation between the photoionization cross section and the induced radiative
recombination rate [5] makes it possible to apply the results of this section to an urgent
problem of the production of cold antihydrogen atoms in magnetic traps [3]. The idea is to use
the resonances due to the quasi-stationary states arising in the magnetic field in order to enhance
the laser-induced radiative recombination into a given bound state by choosing the proper laser
frequency. Let us consider the recombination into the state N ′ = 3, l′ = 0,m′ = 0, that may
be stimulated by a titanium-sapphire laser, under the conditions typical for positron–antiproton
plasma in magnetic traps used for antihydrogen production, namely, the temperature of the
plasma T = 4 K, the positron density ne = 1 × 108 cm−3, the magnetic induction B =
6.10 T. The laser intensity is taken such that at 4 K without the magnetic field the rate of
induced recombination is equal to that of the spontaneous one. In particular , for N = 3
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Figure 19. Profiles of the wavefunctions in the zx plane of the bound states |Nlm〉 with
σ = +1, Z = 1 and γ = 2.595 × 10−5: (a) the vibrational state |320〉 with the minimal energy
correction; (b) the rotational state |300〉 with the maximal energy correction.

this intensity is I = 24 W cm−2 [4]. Figure 18(b) shows the dependence of the laser-
stimulated recombination rate per one antiproton λSRR upon the initial energy of the positron
E = ENlm + ω. For comparison the horizontal dashed line displays the rate λRR of the
spontaneous radiative recombination into all the states with N = 3, which at the intensity
considered is equal to the rate of the laser-stimulated recombination without the magnetic field.
Obviously, there are narrow resonances for which the rate of recombination into the state with
fixed l = 0,m = 0 in magnetic field is appreciably higher than the rate of recombination into
all nine states with different l and m possible for N = 3 without the magnetic field.

Note that states 3d0, 3p0 and 3s0 with energies E320 = −0.055 555 552 07 au, E310 =
−0.055 555 549 49 au and E300 = −0.055 555 542 37 au, respectively, are nearly degenerate.
To calculate these energies we used three equations of the system (58) (jmax = 3); increasing
jmax keeps them stable. We also compared the energies with those calculated by means of
the second-order algebraic perturbation theory [35]. The results coincide with each other to
the 13th digit. The wavefunctions of the bound states |Nlm〉 with even parity σ = +1 in
a homogenous magnetic field are shown in figure 19. Values of functions scaled by factor
γ 3/4 versus scaled coordinates r̂ . From here one can find an evident explanation of the fact
that the cross section of photoionization by the light linearly polarized along the axis z (see
figure 17) from the vibrational state 3d0 distributed along the z axis exceeds in four times the
cross section from the rotational state 3s0 distributed along the x axis.

6. Conclusions

A new efficient method for calculating both the discrete and the continuous spectrum
wavefunctions of a hydrogen atom in a strong magnetic field is developed based on the
Kantorovich approach to the parametric eigenvalue problems in spherical coordinates. The
2D spectral problem for the Schrödinger equation with fixed magnetic quantum number and
parity is reduced to a 1D spectral parametric problem for the angular variable and a finite set of
ordinary second-order differential equations for the radial variable. The rate of convergence
is analyzed numerically and is illustrated with a number of typical examples. The results
are in good agreement with calculations of photoionization cross sections by other authors.
It is shown that the calculated photoionization cross sections has the true threshold behavior
and that the recombination cross sections can be recalculated using the relations presented.
The recurrence relations for the calculation of the coefficients of asymptotic expansions of
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fundamental solutions of a set of the radial equations or the overlap matrix open the way to
study the threshold phenomena using the known asymptotic expansion of Coulomb functions
[36, 37].

The main advantages of the elaborated approach from the calculation and the theoretical
viewpoints consist of the following.

The calculations on all steps of the Kantorovich approach are realized with the help of
stable calculation schemes and with prescribed accuracy. The economy of computer resources
is achieved by means of analytic calculation of all needed asymptotic forms of adaptive basis
functions, matrix elements of radial coupling and radial solutions, which makes it possible to
reduce the interval of integration in the corresponding boundary problems.

For the first time resonance transmission and total reflection effects for scattering processes
of electrons on protons in a homogenous magnetic field are manifested.

The approach developed provides a useful tool for calculations of threshold phenomena
in the formation and ionization of (anti)hydrogen-like atoms and ions in magnetic traps,
quantum dots in magnetic field [38], channeling processes [39] and potential scattering with
confinement potentials [40].
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Appendix A. Asymptotic expansions of basis functions and matrix elements at large r

Following [20, 24], at step 1 we change the coordinate η ∈ [0, 1] (or η ∈ [−1, 0]) for the new
coordinate y according to

y = 2p(1 − η) (or y = 2p(1 + η)). (A.1)

For our purposes it is sufficient to consider η ∈ [0, 1]. We suppose that the coordinate y lies in
the interval corresponding to η ∈ D1,D1 = [1 − η1, 1], η1 = o(p1/2−ε), 0 < ε < 1/2. Now
the eigenvalue problem (54) takes the form[

(y2 − 4py)
∂2

∂y2
+ (2y − 4p)

∂

∂y
−
(

16p2(m2 + y2) + y3(y − 8p)

4y(y − 4p)
+ λn

)]
�j(y) = 0.

(A.2)

The corresponding matrix elements (60) read as

Qjj ′(r) = −I01;jj ′(r), Hjj ′(r) = I11;jj ′(r). (A.3)

where the integrals Idd ′;jj ′(r) with d, d ′ = 0, 1 are calculated as follows:

Idd ′;jj ′(r) = 1

2p

∫ 2p

0
dy

[(
∂

∂r
+

2y

r

∂

∂y

)d

�j (y)

][(
∂

∂r
+

2y

r

∂

∂y

)d ′

�j ′(y)

]
. (A.4)



Calculation of a hydrogen atom photoionization in a strong magnetic field 11517

In these expressions the asymptotic quantum number n denotes the transversal quantum
numbers that are connected with the unified numbers j and j ′ as nl = j − 1 and nr = j ′ − 1.
At steps 2–3 from the set of functions �j(y) we turn to the set of functions Fn(y)

�j (y) = fm(y)Fn(y), fm(y) = exp
(
−y

2

)
y|m|/2

(
1 − y

4p

)|m|/2

, (A.5)

the latter presented as a sum of the associated Laguerre polynomials [20]

Fn(y) = (2p)1/2
∑

s

Cn(s, r)L
|m|
n+s(y). (A.6)

Using the knowing properties of the associated Laguerre polynomials [20], we find that the
coefficients Cn(s, r) satisfy the recurrence relations(

n + s +
|m| + 1

2
− λn + 2(n + s)2 + 2(n + s)(|m| + 1) + |m| + 1

4p

)
Cn(s, r)

+
(n + s + 1)(s + 1 + n + |m|)

4p
Cn(s + 1, r)

+
(s + n)(s + |m| + n)

4p
Cn(s − 1, r) = 0. (A.7)

As a result of this step we get the matrix elements as a sum of integrals with the associated
Laguerre polynomials

Idd ′;jj ′(r) =
∑
sl sr

∫ 2p

0
dyf 2

m(y)C̃(d)
nl ,sl

C̃(d ′)
nr ,sr

, (A.8)

where the coefficients C̃(d)
nr ,sr

are obtained by differentiation of (A.5) and (A.6) and formation
of a given weight factor, f 2

m(y), such that

C̃(0)
nl ,sl

= Cnl
(sl, r)L

|m|
nl+sl

(y), C̃(0)
nr ,sr

= Cnr
(sr , r)L

|m|
nr +sr

(y),

C̃(1)
nr ,sr

= dCnr
(sr , r)

dr
L|m|

nr +sr
(y) +

Cnr
(sr , r)

r

[
(nr + sr + 1)L

|m|
nr +sr +1(y)

− (nr + sr + |m|)L(m|
nr +sr−1(y)

]
. (A.9)

At step 4 for the evaluation of the integrals (A.8) we change the domain from [0, 2p] to [0,∞)

and then omit the exponentially small terms. Using the approximated relation up to the order
of kmax < |m|, that is exact if kmax � |m|(

1 − y

4p

)|m|
=

kmax∑
k=0

|m|!
k!(|m| − k)!

( y

4p

)k

+ O((4p)−kmax−1), (A.10)

and the orthonormality condition for the associated Laguerre polynomials∫ ∞

0
dy exp(−y)y|m|L|m|

nl+sl
(y)L|m|

nr +sr
(y) = (nl + sl + |m|)!

(nl + sl)!
δnl+sl ,nr +sr

, (A.11)

we obtain the matrix elements in the algebraic form. For example, if kmax = 1 the matrix
element I00;jj ≡ Ijj ≡ 1 takes the form

I00;jj (r) =
∑

s

[
1 − |m|(2n + 2s + |m| + 1)

4p

]
Cn(s, r)

2 (n + s + |m|)!
(n + s)!

. (A.12)
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At step 5 we expand Cn(s, r) and λn as

Cn(s, r) = c(0)
s,n +

kmax∑
k=1

(
1

4p

)k

c(k)
s,n, λn = 4p

[
|m| + 1

2
+ β(0)

n +
kmax∑
k=1

(
1

4p

)k

β(k)
n

]
.

(A.13)

Substituting (A.13) into (A.7) and equating the coefficients at equal powers of p, we arrive at
the set of recurrence relations for evaluating the coefficients β(k)

n and c(k)
s,n (except c

(k)
0,n)

sc(k)
s,n = ((n + s + |m| + 1)(2n + 2s + |m| + 1) − (n + s + |m|)(|m| + 1))c(k−1)

s,n

− (n + s)(n + s + |m|)c(k−1)
s−1,n − (n + s + |m| + 1)(n + s + 1)c

(k−1)
s+1,n +

k−|s|∑
k′=1

β(k′)
n c(k−k′)

s,n ,

(A.14)

with the initial conditions

β(0)
n = n, c(0)

s,n = δs0

√
n!

(n + |m|)! . (A.15)

Note that all c(k)
s,n ≡ 0 if |s| > k. For kmax = 1 the output is the following:

c
(1)
−1,n = n(n + |m|)c(0)

0,n, β(1)
n = −1 − 2n − 2|m|n − 2n2 − |m|,

c
(1)
1,n = −(n + 1)(n + |m| + 1)c

(0)
0,n.

(A.16)

Substituting (A.13) into (A.12) and equating it to unity, we find the coefficients c
(k)
0,j

c
(1)
0,n = |m|(2n + |m| + 1)

2
c
(0)
0,n. (A.17)

At step 6, substituting (A.13) with the coefficients c
(k)
s,j evaluated at step 5 into the expressions

of the matrix elements, evaluated at step 4 by means of equation (A.3), we easily find the
matrix elements expanded in inverse powers of r with finite j = nl − 1, j ′ = nr − 1 and with
the exponential terms omitted [22] in the form (71).

Appendix B. The effective approximation for the Kantorovich method

Consider the set of close-coupled radial equations (58) and neglect the coupling of the states
|j 〉 and |j ′〉 disconnected from the open channel |io〉. This can be useful for sufficiently large
effective charge Ẑ = Z/

√
γ , when the contribution of the adiabatic correction is sufficiently

small. From the physical viewpoint this may help to understand the asymptotic boundary
conditions in the open channel. We introduce the so-called effective adiabatic approximation,
in which we project the radial equations onto the open channel |i〉 = |io〉 by means of a
canonical transformation. The new solution χnew

ii ≡ χnew
ii (r) is related to the old solutions

χji ≡ χji(r) of equations (58) as

χnew
ii =

∑
j

Tijχj ≈
jmax∑

j,j ′=1

〈i| exp(ıS(2))|j ′〉〈j ′| exp(ıS(1))|j 〉χji . (B.1)

Restricting the expansion of the exponentials to the second order exp(iS(1)) ≈ 1 + ıS(1) +
(ıS(1))2/2 and exp(ıS(2)) ≈ 1 + ıS(2), we define the nondiagonal matrix elements of the
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generators S(1) and S(2) in the following way:

ıS
(1)
ij = (1 − δij )�

−1
ij

(
Hij + Qij

d

dr
+

1

r2

d

dr
r2Qij

)
,

ıS
(2)
ij = (1 − δij )2�−2

ij QijV
′
jj , (B.2)

�ij = �ij (r) = Vii − Vjj , Vii = Uiir
−2.

This approximation eliminates the rhs of equation (58) with the accuracy O
(

maxij

∣∣�−3
ij

∣∣)
and generates the inverse operator for the open channel |io〉

χj = T −1
jio

χnew
io

, χnew
io

=
∑

j

Tiojχj ,

〈io|T |io〉 = 〈io|T −1|io〉 = 1 = 〈io|io〉.
(B.3)

As a result we get the projection of equations (58) onto the channel |io〉∑
ij

Tioi(H
old − 2E)ijT

−1
jio

χnew
io

= (
H new

ioio
− 2E

)
χnew

io
= 0, (B.4)

where

H new
ioio

= H old
ioio

+ 1
2 [ıS(1), H old]ioio + 1

2 [ıS(1) + ıS(2), H 1]ioio , (B.5)

and H 1
ij = �ij ıS

(2)
ij . We can write equation (B.4) in the explicit form

− 1

r2

d

dr

r2

µ(r)

dχnew
io

(r)

dr
+

µ′(r)
µ2(r)r

χnew
io

(r) + [Ûeff − 2E]χnew
io

(r) = 0. (B.6)

The new solution ψ ≡ µ−1/2χnew
ii (r) in such a diagonal representation satisfies the following

equation

− 1

r2
(r2ψ ′)′ + µ1/2(µ−1/2)′′ψ + µ[Ûad + δU − 2E]ψ = 0, lim

r→0
r2 dψ

dr
= 0, (B.7)

where the modified scalar product and the adiabatic potential are defined as

〈ψ |ψ〉 =
∫ ∞

0
drr2µψψ, Ûad = Vii .

The effective potential Ûeff(r) is the sum of the adiabatic potential Ûad(r) and the effective
non-adiabatic correction δU(r). µ(r) can be considered as the effective mass, expressed as

µ−1(r) = 1 + Wii(r), Wii(r) = −4
jmax∑
j �=i

Qij (r)Qji(r)�
−1
ij (r),

δU(r) =
jmax∑
j �=i

(
�−1

ij V
(1)
ij + �−2

ij V
(2)
ij + �−3

ij V
(3)
ij

)
.

(B.8)

Here Wii(r) is the effective mass correction and

V
(1)
ij = H 2

ij − (Q′
ij )

2 + 2QijH
′
ij − 2QijQ

′′
ij ,

V
(2)
ij = HijQij (�

′
ij − �′

ij ) + QijQ
′
ij (�

′
ij + 3�′

ij ) + Q2
ij (�

′′
ij + �′′

ij ),

V
(3)
ij = Q2

ij (�
′
ij + �′

ij )(�
′
ij − 2�′

ij ),

�ij = �ij (r) = Vii + Vjj .

(B.9)
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Figure B1. The effective mass correction W11, its derivative W ′
11 and the inverse effective mass

µ−1 at γ = 1 and m = 0 for the first even (a) and odd (b) states.

In the above expressions all terms are functions of r; the dash denotes the derivative with
respect to r. At large r the leading terms of Wii(r) and δU(r) calculated using the asymptotic
basis functions read as

Wii(r) = Was
ii r−2 + O(r−4), δU(r) = δUasr−4 + O(r−6), (B.10)

where the effective mass correction

−Was
ii = 〈i|ρ2|i〉 = 2(2n + |m| + 1)γ −1 (B.11)

is the mean value of the transversal variable, ρ2 = (r sin θ)2, characterizing the electron
precession around the z axis in the magnetic field γ (see figure 1), while

δUas = −(4n3 + 5n2 − 4n − 3 + |m|(6n2 + 5n − 2) + m2(2n + 1))(2γ )−1 (B.12)

is the asymptotic value correction of the electron polarizability,

U = Uasr−4 = (E(4) + H(4))r−4, (B.13)

where coefficients E(4) and H(4) are given by (72) and (74). The plots of the above effective
mass and effective potentials having essentially nonmonotonic behavior in a reaction region
and given asymptotic form for large r are shown in figures B1 and B2.

For elastic scattering states with given 2E
(
pio

) = p2
io

+ E
(0)
io

we reformulate the problem
as(
Ĥ eff − p2

io

)
ψ ≡ − 1

r2
(r2ψ ′)′ + µ1/2(µ−1/2)′′ψ + µ

[
Ûeff − 2E

(
pio

)]
ψ = 0. (B.14)

For the function χ eff = rµ1/2ψ this equation has the conventional form(
d

dr
µ−1(r)

d

dr
− Ueff(r) + p2

io

)
χ eff

ioio
(r) = 0, (B.15)

where the effective potential is given by

Ueff(r) = Vioio (r) + δU(r) − 2Z

r
− E

(0)
io

. (B.16)

For large r, using the asymptotic values W
(jmax)

ioio
of r2W(r) and δU

(jmax)

ioio
of r4δU(r) from (B.8)

we have (
− d

dr

(
1 +

W
(jmax)

ioio

r2

)
d

dr
− 2Z

r
+

δU
(jmax)

ioio

r4
− p2

io

)
χ̄ as

ioio
(r) = 0, (B.17)
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Figure B2. The adiabatic potential Ûad(r), the effective adiabatic potential Ûeff(r), the effective
non-adiabatic correction δU , the potential curve E1(r) and the radial potential H11 at γ = 1 and
m = 0 for the first even (a) and odd (b) states.

and to the order of O(r−3) equation (B.15) may be written as(
d2

dr2
− 2W

(jmax)

ioio

r3

d

dr
+

(
2Z

r
+ p2

io

)(
1 − W

(jmax)

ioio

r2

))
χ̄ as

ioio
(r) = 0. (B.18)

For pioW
(jmax)

ioio

/
(2r) � 1 the solutions belonging to the continuous spectrum can be written

in the form

χ̄ as
ioio

(r) ≈ 1√
2πpio

sin

(
pior1 +

Z

pio

ln(2pior1) + δc + δ(jmax)

)
≈ 1√

2πpio

[
sin

(
pior +

Z

pio

ln(2pior) + δc + δ(jmax)

)

+ pio

W
(jmax)

ioio

2r
cos

(
pior +

Z

pio

ln(2pior) + δc + δ(jmax)

)]
, (B.19)

where r1 = r
(
1 + W

(jmax)

ioio

/
(2r2)

)
and r1 = r(1 − 〈io|ρ2|io〉/(2r2)) at jmax � io + 1 and

δ(jmax) ≡ δ(jmax)
(
pio

)
is the required phase shift of the elastic scattering in the open channel |io〉

count off the known Coulomb phase shift δc = arg �
(
1 − ıZ/pio

)
.

Remembering that r2 = ρ2 + z2 and |z| ∼ r(1 − ρ2/(2r2)) in the asymptotic region
ρ/r � 1 one can introduce the mean position operator in the new representation χnew = T χ

rnew
mean = 〈

χnew
∣∣r̂new

mean

∣∣χnew
〉 = 〈χ |T −1r̂new

meanT |χ〉 = 〈χ |r̂mean|χ〉 = rmean. (B.20)

The mean position operator r̂new
mean = r plays the role of the longitudinal coordinate z in the new

representation χnew. In other words, the z-delocalization is accounted for in the new radial
functions χnew = T χ . In the old representation χ the mean position operator r̂mean is defined
as

r̂mean = T −1r̂new
meanT = T −1rT = r + δr̂, (B.21)

where δr̂ is the delocalization of the longitudinal coordinate z that has the order of ρ2/(2r) in
the asymptotic region ρ/r � 1 (see figure 1)

r̂mean → T −1rT ≈ 〈z〉. (B.22)
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Note that the transformation affects only the form of the radial solutions and the longitudinal
coordinate z enters only the total expansion of the wavefunction. If we omit the non-adiabatic
terms, the solution takes the adiabatic form

χ ad ∼ sin

(
pior +

Z

pio

ln(2pior) + δc + δad

)
. (B.23)

Then the difference between the true phase shift δ, jmax th approximation δ(jmax) and the
adiabatic phase shift δad can be expressed as

δ(jmax) = δad − pio

W
(jmax)

ioio

2r
, δ = lim

jmax→∞
δ(jmax) = δad + pio

〈io|ρ2|io〉
2r

. (B.24)

The asymptotic solutions χ̄j (r) of equations (58) are related to the solution χ̄new
ioio

(r) of the
effective equation (B.7) via the inverse asymptotic transformation that reveals weak asymptotic
coupling of the closed channels

χ̄ as
jio

(r) = T −1
jio

χ̄new
ioio

(r) ∼ exp

[
−〈j |ρ2|io〉(1 − δjio )

2r

d

dr

]
χ̄new

ioio
(r). (B.25)

Making use of equation (B.25), we arrive at the asymptotic solutions for equations (58)

χ̄ as
ioio

(r) = χ̄new
ioio

(r), χ̄as
jio

(r) = T −1
j0 χ̄new

ioio
(r)

≈ −〈j |ρ2|io〉(1 − δjio )

2
√

2πpior
pio cos

(
pior +

Z

pio

ln(2pior) + δc + δ(jmax)

)
. (B.26)

The expansion of the partial wavefunction �io in the open channel |io〉 over the set of asymptotic
angular functions �j(θ; r) = r−1�̃j (ρ)(1 + o(1)) for ρ/r � 1,

�io =
∣∣�̃io

〉〈
�̃io

∣∣�̃io

〉
+

jmax→∞∑
j �=io

|�̃j 〉〈�̃j |T −1
∣∣�̃io

〉 χ̄new
ioio

(r), (B.27)

subject to the completeness condition takes the form

�io ≈ �̃io (ρ)√
2πpio

[
sin

(
pior +

Z

pio

ln(2pior) + δc + δ

)
−pio

ρ2

2r
cos

(
pior +

Z

pio

ln(2pior) + δc + δ

)]
. (B.28)

For pioρ
2/(2r) � 1 , to the accuracy of O(r−1), we have the true separable representation in

cylindrical coordinates (ρ, z)

�io (r, ρ) ∼ �̃io (ρ)√
2πpio

sin

(
pio

(
r − ρ2

2r

)
+

Z

pio

ln

(
2pio

(
r − ρ2

2r

))
+ δ

(
pio

))
→ �̃io (ρ)√

2πpio

sin

(
pio |z| +

Z

pio

ln 2pio |z| + δ
(
pio

)) ∼ �̃io (ρ)√
2πpio

χ̄
(0)
ioio

(|z|). (B.29)

Taking equation (56) and |z| ∼ r(1 − ρ2/2r2) into account, one can see that it is compatible
with asymptotic expressions (75) and (81) to the order kmax of truncation of expansions (76)
and (84).
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Appendix C. Asymptotic function ‘incident wave + ingoing wave’

Let us express the wavefunction (105) as

Ψ(−)

Em
→←(r, η) = 1√

2

(
(Φmσ=+1(η; r))T χ̂(mσ=+1)(E, r)

± (Φmσ=−1(η; r))T χ̂(mσ=−1)(E, r)
)

exp(−ıδc). (C.1)

As mentioned above, asymptotically this function consists of waves going into the center and
an outgoing plane wave (reverse to the case of an incident plane wave and waves going out of
the center in scattering theory). Using (57) equation (C.1) can be rewritten in the form

Ψ(−)

Em
→←(r, η) = 1

2

(
(Φm←(η; r))T [χ̂(mσ=+1)(E, r) ± χ̂(mσ=−1)(E, r)]

+ (Φm→(η; r))T [χ̂(mσ=+1)(E, r) ∓ χ̂(mσ=−1)(E, r)]
)

exp(−ıδc). (C.2)

At r → ∞, |η| ∼ 1 it has the asymptotic form

Ψ(−)
Em→(r, η) →

√
2

π
((Φm←(η; r))T [χ̌(r) + χ̌∗(r)R̂†] + (Φm→(η; r))T χ̌∗(r)T̂†), (C.3)

Ψ(−)
Em←(r, η) →

√
2

π
((Φm←(η; r))T χ̌∗(r)T̂† + (Φm→(η; r))T [χ̌(r) + χ̌∗(r)R̂†]), (C.4)

where T̂† and R̂† are the conjugate transmission and reflection amplitude matrices from (31),
and the fundamental solutions χ̌(r) are related to the asymptotic solutions χ(r) from (76) or
(81)

T̂† = 1
2

(−Š†
+1 + Š†

−1

)
, R̂† = 1

2

(−Š†
+1 − Š†

−1

)
, χ̌(r) = χ(r) exp(−ıδc). (C.5)

Note that Φm←(η; r) = Φm→(−η; r) and Φm←(η < 0; r) = Φm→(η > 0; r) =
O(exp(−p(1 + |η|)) at r → ∞ and |η| ∼ 1. Equations (C.3) and (C.4) may be rewritten in
the matrix form(

Ψ(−)
Em→(r, η+) Ψ(−)

Em←(r, η+)

Ψ(−)
Em→(r, η−) Ψ(−)

Em←(r, η−)

)
→

√
2

π

(
Φm←(η+; r) 0

0 Φm→(η−; r)

)T

×
[(

χ̌(r) 0
0 χ̌(r)

)
+

(
0 χ̌∗(r)

χ̌∗(r) 0

)
Ŝ†
]

, (C.6)

where η± = ±|η|, |η| ∼ 1 and Ŝ† = Ŝ−1 is the inverse of the scattering matrix corresponding
to (35):

Ŝ† =
(

T̂† R̂†

R̂† T̂†

)
. (C.7)
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